3.107 \(\int \cos ^3(c+d x) (a+a \sec (c+d x))^3 (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=156 \[ -\frac{(5 A-6 C) \sin (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{6 d}+\frac{5 a^3 A \sin (c+d x)}{2 d}+\frac{A \sin (c+d x) \cos (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{2 a d}+\frac{1}{2} a^3 x (5 A+6 C)+\frac{3 a^3 C \tanh ^{-1}(\sin (c+d x))}{d}+\frac{A \sin (c+d x) \cos ^2(c+d x) (a \sec (c+d x)+a)^3}{3 d} \]

[Out]

(a^3*(5*A + 6*C)*x)/2 + (3*a^3*C*ArcTanh[Sin[c + d*x]])/d + (5*a^3*A*Sin[c + d*x])/(2*d) + (A*Cos[c + d*x]^2*(
a + a*Sec[c + d*x])^3*Sin[c + d*x])/(3*d) + (A*Cos[c + d*x]*(a^2 + a^2*Sec[c + d*x])^2*Sin[c + d*x])/(2*a*d) -
 ((5*A - 6*C)*(a^3 + a^3*Sec[c + d*x])*Sin[c + d*x])/(6*d)

________________________________________________________________________________________

Rubi [A]  time = 0.396585, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {4087, 4017, 4018, 3996, 3770} \[ -\frac{(5 A-6 C) \sin (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{6 d}+\frac{5 a^3 A \sin (c+d x)}{2 d}+\frac{A \sin (c+d x) \cos (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{2 a d}+\frac{1}{2} a^3 x (5 A+6 C)+\frac{3 a^3 C \tanh ^{-1}(\sin (c+d x))}{d}+\frac{A \sin (c+d x) \cos ^2(c+d x) (a \sec (c+d x)+a)^3}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2),x]

[Out]

(a^3*(5*A + 6*C)*x)/2 + (3*a^3*C*ArcTanh[Sin[c + d*x]])/d + (5*a^3*A*Sin[c + d*x])/(2*d) + (A*Cos[c + d*x]^2*(
a + a*Sec[c + d*x])^3*Sin[c + d*x])/(3*d) + (A*Cos[c + d*x]*(a^2 + a^2*Sec[c + d*x])^2*Sin[c + d*x])/(2*a*d) -
 ((5*A - 6*C)*(a^3 + a^3*Sec[c + d*x])*Sin[c + d*x])/(6*d)

Rule 4087

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rule 4017

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 4018

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*(m + n
)), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d*n
) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && Ne
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^3(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac{A \cos ^2(c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d}+\frac{\int \cos ^2(c+d x) (a+a \sec (c+d x))^3 (3 a A-a (A-3 C) \sec (c+d x)) \, dx}{3 a}\\ &=\frac{A \cos ^2(c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d}+\frac{A \cos (c+d x) \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{2 a d}+\frac{\int \cos (c+d x) (a+a \sec (c+d x))^2 \left (2 a^2 (5 A+3 C)-a^2 (5 A-6 C) \sec (c+d x)\right ) \, dx}{6 a}\\ &=\frac{A \cos ^2(c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d}+\frac{A \cos (c+d x) \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{2 a d}-\frac{(5 A-6 C) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{6 d}+\frac{\int \cos (c+d x) (a+a \sec (c+d x)) \left (15 a^3 A+18 a^3 C \sec (c+d x)\right ) \, dx}{6 a}\\ &=\frac{5 a^3 A \sin (c+d x)}{2 d}+\frac{A \cos ^2(c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d}+\frac{A \cos (c+d x) \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{2 a d}-\frac{(5 A-6 C) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{6 d}-\frac{\int \left (-3 a^4 (5 A+6 C)-18 a^4 C \sec (c+d x)\right ) \, dx}{6 a}\\ &=\frac{1}{2} a^3 (5 A+6 C) x+\frac{5 a^3 A \sin (c+d x)}{2 d}+\frac{A \cos ^2(c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d}+\frac{A \cos (c+d x) \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{2 a d}-\frac{(5 A-6 C) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{6 d}+\left (3 a^3 C\right ) \int \sec (c+d x) \, dx\\ &=\frac{1}{2} a^3 (5 A+6 C) x+\frac{3 a^3 C \tanh ^{-1}(\sin (c+d x))}{d}+\frac{5 a^3 A \sin (c+d x)}{2 d}+\frac{A \cos ^2(c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d}+\frac{A \cos (c+d x) \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{2 a d}-\frac{(5 A-6 C) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{6 d}\\ \end{align*}

Mathematica [B]  time = 6.17475, size = 1014, normalized size = 6.5 \[ a^3 \left (-\frac{3 C \cos ^2(c+d x) (\cos (c+d x)+1)^3 \log \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )-\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right ) \left (C \sec ^2(c+d x)+A\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{4 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{3 C \cos ^2(c+d x) (\cos (c+d x)+1)^3 \log \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )+\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right ) \left (C \sec ^2(c+d x)+A\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{4 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{(5 A+6 C) x \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{8 (\cos (2 c+2 d x) A+A+2 C)}+\frac{(15 A+4 C) \cos (d x) \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin (c) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{16 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{3 A \cos (2 d x) \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin (2 c) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{16 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{A \cos (3 d x) \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin (3 c) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{48 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{(15 A+4 C) \cos (c) \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin (d x) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{16 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{3 A \cos (2 c) \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin (2 d x) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{16 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{A \cos (3 c) \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin (3 d x) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{48 d (\cos (2 c+2 d x) A+A+2 C)}+\frac{C \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin \left (\frac{d x}{2}\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{4 d (\cos (2 c+2 d x) A+A+2 C) \left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )-\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}+\frac{C \cos ^2(c+d x) (\cos (c+d x)+1)^3 \left (C \sec ^2(c+d x)+A\right ) \sin \left (\frac{d x}{2}\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{4 d (\cos (2 c+2 d x) A+A+2 C) \left (\cos \left (\frac{c}{2}\right )+\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )+\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2),x]

[Out]

a^3*(((5*A + 6*C)*x*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2))/(8*(A + 2
*C + A*Cos[2*c + 2*d*x])) - (3*C*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Log[Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/
2]]*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2))/(4*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (3*C*Cos[c + d*x]^2*(1
 + Cos[c + d*x])^3*Log[Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2))/(
4*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + ((15*A + 4*C)*Cos[d*x]*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*
x)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[c])/(16*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (3*A*Cos[2*d*x]*Cos[c + d*x]^2*
(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[2*c])/(16*d*(A + 2*C + A*Cos[2*c + 2*d*x]
)) + (A*Cos[3*d*x]*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[3*c])/(
48*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + ((15*A + 4*C)*Cos[c]*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x
)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[d*x])/(16*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (3*A*Cos[2*c]*Cos[c + d*x]^2*(
1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[2*d*x])/(16*d*(A + 2*C + A*Cos[2*c + 2*d*x
])) + (A*Cos[3*c]*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[3*d*x])/
(48*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (C*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec
[c + d*x]^2)*Sin[(d*x)/2])/(4*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin
[c/2 + (d*x)/2])) + (C*Cos[c + d*x]^2*(1 + Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2)*Sin[(d*
x)/2])/(4*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])))

________________________________________________________________________________________

Maple [A]  time = 0.103, size = 146, normalized size = 0.9 \begin{align*}{\frac{A \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ){a}^{3}}{3\,d}}+{\frac{11\,A{a}^{3}\sin \left ( dx+c \right ) }{3\,d}}+{\frac{{a}^{3}C\sin \left ( dx+c \right ) }{d}}+{\frac{3\,A{a}^{3}\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) }{2\,d}}+{\frac{5\,{a}^{3}Ax}{2}}+{\frac{5\,A{a}^{3}c}{2\,d}}+3\,{a}^{3}Cx+3\,{\frac{C{a}^{3}c}{d}}+3\,{\frac{{a}^{3}C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{{a}^{3}C\tan \left ( dx+c \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x)

[Out]

1/3/d*A*cos(d*x+c)^2*sin(d*x+c)*a^3+11/3*a^3*A*sin(d*x+c)/d+a^3*C*sin(d*x+c)/d+3/2/d*A*a^3*sin(d*x+c)*cos(d*x+
c)+5/2*a^3*A*x+5/2/d*A*a^3*c+3*a^3*C*x+3/d*C*a^3*c+3/d*a^3*C*ln(sec(d*x+c)+tan(d*x+c))+a^3*C*tan(d*x+c)/d

________________________________________________________________________________________

Maxima [A]  time = 0.944634, size = 185, normalized size = 1.19 \begin{align*} -\frac{4 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a^{3} - 9 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{3} - 12 \,{\left (d x + c\right )} A a^{3} - 36 \,{\left (d x + c\right )} C a^{3} - 18 \, C a^{3}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 36 \, A a^{3} \sin \left (d x + c\right ) - 12 \, C a^{3} \sin \left (d x + c\right ) - 12 \, C a^{3} \tan \left (d x + c\right )}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/12*(4*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a^3 - 9*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^3 - 12*(d*x + c)*A*a
^3 - 36*(d*x + c)*C*a^3 - 18*C*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 36*A*a^3*sin(d*x + c) - 1
2*C*a^3*sin(d*x + c) - 12*C*a^3*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.530032, size = 350, normalized size = 2.24 \begin{align*} \frac{3 \,{\left (5 \, A + 6 \, C\right )} a^{3} d x \cos \left (d x + c\right ) + 9 \, C a^{3} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - 9 \, C a^{3} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) +{\left (2 \, A a^{3} \cos \left (d x + c\right )^{3} + 9 \, A a^{3} \cos \left (d x + c\right )^{2} + 2 \,{\left (11 \, A + 3 \, C\right )} a^{3} \cos \left (d x + c\right ) + 6 \, C a^{3}\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/6*(3*(5*A + 6*C)*a^3*d*x*cos(d*x + c) + 9*C*a^3*cos(d*x + c)*log(sin(d*x + c) + 1) - 9*C*a^3*cos(d*x + c)*lo
g(-sin(d*x + c) + 1) + (2*A*a^3*cos(d*x + c)^3 + 9*A*a^3*cos(d*x + c)^2 + 2*(11*A + 3*C)*a^3*cos(d*x + c) + 6*
C*a^3)*sin(d*x + c))/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(a+a*sec(d*x+c))**3*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.25528, size = 284, normalized size = 1.82 \begin{align*} \frac{18 \, C a^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 18 \, C a^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{12 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1} + 3 \,{\left (5 \, A a^{3} + 6 \, C a^{3}\right )}{\left (d x + c\right )} + \frac{2 \,{\left (15 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 6 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 40 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 12 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 33 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/6*(18*C*a^3*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 18*C*a^3*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 12*C*a^3*tan(
1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 - 1) + 3*(5*A*a^3 + 6*C*a^3)*(d*x + c) + 2*(15*A*a^3*tan(1/2*d*x + 1/
2*c)^5 + 6*C*a^3*tan(1/2*d*x + 1/2*c)^5 + 40*A*a^3*tan(1/2*d*x + 1/2*c)^3 + 12*C*a^3*tan(1/2*d*x + 1/2*c)^3 +
33*A*a^3*tan(1/2*d*x + 1/2*c) + 6*C*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^3)/d